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A B S T R A C T

The increasing share of wind energy induces a strain on the electricity network. To unburden the transmission
system operators from this strain, the dispensable wind energy can locally be stored in an energy carrier, e.g.
ammonia (NH3). Existing work considers fixed operational parameters during design optimization to represent
real-life conditions of the Power-to-NH3 system. However, uncertainties significantly affect real-life perfor-
mances, which can lead to suboptimal plants. To provide a robust design—least sensitive to uncertainties—we
considered the main operational uncertainties during design optimization and illustrated the contribution of
each uncertainty on the systems NH3 production. This work presents the optimization under uncertainty of the
Power-to-NH3 process and a global sensitivity analysis on the optimized designs. The results revealed a design
trade-off, where a productive design produces 3.2 times more NH3 on average, but is 2.6 times less robust (higher
standard deviation) than the robust design. A global sensitivity analysis on the most robust design showed that
the temperature fluctuation of the NH3 reactor dominates the average NH3 production by 99.7%. The same
sensitivity analysis on the most productive design showed that the wind speed measurement error and the
temperature variation are both influencing the ammonia production by respectively 75.4% and 22.5%.
Accordingly, an accurate anemometer and improving the temperature control over the NH3 reactor are the most
effective actions to make the most productive design more robust. However, a robust plant can be obtained by
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decreasing the load size of the plant. It suffices to improve the temperature control over the NH3 reactor to make
this design (adopted from the trade-off) less sensitive to the noise. Future investigations involve analyzing the
dynamic operations of the robust Power-to-NH3 pathway and analyze the impact of uncertainties on its levelized
cost.

1. Introduction

The erratic nature of renewable sources requires a higher degree of
flexibility of the electricity grid [1]. To avoid this requirement, an en-
ergy storage system is necessary to regulate the supply of this non-
dispatchable energy, removing its intermittent effect on the grid. The
primary purpose of the storage system is to capture the excess energy at
any time and inject it back into the network to compensate for varia-
bility between supply and demand without relying on fossil fuels while
improving the security of electricity supply in a sustainable way [2,3].
For significant power levels, the production of chemicals can be em-
ployed to store the energy in an electrochemical energy carrier. This
energy carrier could subsequently fuel a power production system for
power generation; balancing the electricity network for prolonged
power disruptions and reducing the need for a flexible grid [4].

The hydrogen-based Power-to-Power (PtP) concept enables the
storage of large-scale (up to GW) power via water electrolysis, but
realizing it in practice is proven difficult. Still, the declining cost in
renewable technologies promoted the creation of numerous research
and demonstration projects across Europe [5–8]. However, storing pure
H2 in a compressed or cryogenic (below −253 °C) container for several
months provides low PtP efficiencies (between 34% and 38%) and in-
cludes higher storage costs [9]. Besides, the storage of this substance
introduces safety issues due to its invisible, odorless and flavorless
properties, making it hard to detect leaks and increases the risk of ex-
plosion [10,11].

A more viable and safer way for the implementation of this hy-
drogen-based energy storage system is by converting the electrolytic H2
to ammonia (NH3), using the industrially mature Haber-Bosch Synthesis
(HBS) process [12]. The HBS process consists of synthesizing a mixture
of H2 and nitrogen gas (N2) to form NH3 in the presence of a catalyst at
an operational temperature between 350 °C and 550 °C and a pressure
ranging from 150 bar to 250 bar [13–15].

NH3 gained a significant role during recent years in the application
of large-scale H2 storage, but also for its potential utilization as a
maritime fuel and sustainable nitrogen-based fertilizer [16–20].
Morgan et al. [13] developed an analytic model to determine in which
circumstances this Power-to-Ammonia (PtA) concept can be econom-
ically viable in addition to a diesel–fueled generator for a geographic
islanded case. A more extensive analysis by Bañares-Alcántara
et al. investigated the potential use of NH3-based energy storage in
electric islanded cases [14]. Later on, the Institute for Sustainable
Process Technology (ISPT) presented a feasibility study for im-
plementing this renewable NH3 concept of storing the abundance of
wind energy for local farming and power generation in the Netherlands
by considering economic and industrial competitive scenarios [9]. The
studies of Sánchez et al. [21,22] investigated the optimal scaling of
each subprocess (differentiating between air separation units and am-
monia synthesis reactors), providing a relation between NH3 produc-
tion and investment cost linked to the renewable energy supply mix to
the PtA plant. The studies carried out by Allman et al. [23], Beerbühl
et al. [24] and Palys et al. [25] incorporated the capacity sizing and
energy scheduling of the PtA plant, while considering the variability of
solar and wind energy into the design optimization. Pilot plants of such
an ammonia-based energy storage system are built in two locations in
the world, namely at the Rutherford Appleton Laboratory (RAL) in the
UK and the Fukushima Renewable Energy Institute – AIST (FREA) in
Japan. The goal of the PtA plant at RAL is improving the plants’ com-
mercial possibilities for providing a market-flexible energy carrier [18],

while the research objective of the demonstration plant at FREA is to
enhance the HBS process with the development of new Ruthenium
catalysts, which enables the NH3 synthesis at a low-pressure and low-
temperature environment [26]. The presence of uncertainties is how-
ever observed by Reese et al. on the operations of a small-scale am-
monia synthesis pilot plant located in Minnesota in the form of tem-
perature and pressure fluctuations in the reactor [17]. Although each
study included a sensitivity analysis of the electrolyzer’s operation and
the HBS process, no investigation has been done on the identification
and quantification of operational uncertainties influencing the perfor-
mance of the entire storage system.

This paper provides the modeling of the NH3-based energy storage
together with the identification of reported operational uncertainties
from literature, which was combined to perform a design optimization
under uncertainty. We performed the modeling of an electrolyzer op-
erating with an alkaline electrolyte, a Pressure Swing Adsorption (PSA)
to obtain nitrogen from the air, and a Haber-Bosch Synthesis (HBS)
plant to synthesize NH3 in Aspen Plus. In addition to the chemical
modeling in Aspen Plus, a Wind Turbine Generator (WTG) is created in
Python to convert wind speed into electric power. These models were
assembled and optimized with a Multi-Objective Genetic Algorithm
(MOGA) to establish a set of optimized designs. This energy model was
then combined with the identified operational uncertainties of each
subsystem to establish an optimization under uncertainty by the use of
an Uncertainty Quantification (UQ) algorithm. With the MOGA and UQ
approach, a set of optimized designs was determined, which were least
sensitive to the effect of these uncertainties while maximizing the NH3
production. This so-called Robust Design Optimization (RDO) approach
improves the design of the plant in the presence of parametric un-
certainties. The RDO process consisted of combining the Nondominated
Sorting Genetic Algorithm (NSGA-II) [27] and the Polynomial Chaos
Expansion (PCE) technique [28], which ultimately evolved the defined
decision variables towards a better performance while taking into ac-
count the implemented uncertainties.

2. Modeling the storage of wind energy through ammonia
synthesis

This section presents the design of each process necessary to store
wind energy in the energy carrier NH3. The first subsection provides the
wind speed data used to power the storage system. This power is de-
termined by the model of a wind turbine in Python. Each following
subsection presents the modeling of an Alkaline Water Electrolyzer
(AWE), a PSA and the HBS in Aspen Plus. The description and in-
tegration of the operational uncertainties are included for the wind
turbine model, the AWE and the HBS at each corresponding subsection.

2.1. Wind power generation

We incorporated the hourly wind speed measurement data of a wind
turbine park located in Galicia (Spain) and sequentially sorted the data
in a wind speed frequency distribution with a step size of 1 m/s [29].
Through the integration of a power curve of a typical wind turbine
model, this wind speed data is converted into electric power. We based
this power curve on the design of the Vestas V112 onshore wind turbine
and integrated this curve in Python through Eq. (1) to calculate the
generated wind power (PWTG):
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where is the density of air in kg/m3 (at sea level and at 15 °C,
= 1.22 kg/m3), A is the area of the rotating blades in Cm , P

2 is the
power coefficient and v is the wind speed in m/s.

In the adopted model, the maximum power output was adjusted to
3 MW at a rated wind speed of 11 m/s while assuming a constant power
coefficient of 37%. We performed this adaptation to correlate the wind
speed and electric power between the cut-in and rated wind speed with
the cubic relationship (Eq. (1)) without considering the dependency of
Cp on the wind speed. The original and adopted design specification are
provided in Table 1.

Wind turbines are inherently influenced by a variety of un-
certainties, providing ambiguous prospects for start-up wind turbine
parks. These uncertainties have a direct effect on the profitability of
these projects, which are mainly based on wind speed measurements or
estimations to forecast the capacity factor [32] or the Annual Energy
Production (AEP) of a location [33]. Lackner et al. categorized a variety
of uncertainties influencing this AEP in four categories, which consists
of: wind speed measurement uncertainty, historical wind speed data,
wind resource modeling variability, and lastly, the site assessment un-
certainty [33]. Because the wind speed measurements for one year are
used in this design optimization study (not the power production of an
actual wind turbine), only the first category of Lackner et al. (the wind
speed measurement error) is applied to the design of the WTG and
considered in the UQ analysis. Kaganov et al. designated the wind
speed measurement error of rotational measurement devices between
1% and 6% [31]. We integrated a wind speed measurement uncertainty
of 1% to consider the most accurate wind speed measurement in the
wind turbine design. A Gaussian distribution characterizes this un-
certainty in the UQ analysis because the real distribution of the wind
speed measurement error is unknown in this context [33]. The UQ
analysis assesses the uncertainty propagation for each design on the
considered objective. The following expression enables the im-
plementation of this uncertainty (Eq. (2)):

=v v e(1 ) [m/s],measurement data measurement (2)

where vmeasurement is the measured wind speed in m/s resulting from the
input wind data (vdata) and the error of the device (emeasurement) in %.
During the robust design optimization process, the measured wind
speed (vmeasurement) replaces the wind speed (v) in Eq. (1).

2.2. Alkaline water electrolyzer

An Alkaline Water Electrolyzer (AWE) was selected because of its
proven reliability in industrial applications and a multitude of com-
mercially available technologies on the market, allowing the AWE to
operate commercially at MW scale [15,34,35]. The AWE process was
modeled in Aspen Plus for one electrolytic cell (Fig. 1). To resemble the
real operation of an AWE and determine the hydrogen production when
applying electric power to the electrolyzer stack, the electrolyzer model
of Ulleberg [36] is integrated with a FORTRAN calculator in the
‘Electrolytic cell’ block (Fig. 1). Ullebergs electrolyzer model consists of
two empirical equations: a voltage-current (U-I) relationship and the
characterization of the Faraday efficiency ( F).

The applied voltage U on the electrolytic cell is determined by the
reversible voltageUrev of the electrolytic reaction, the current I flowing
through the electrolytic cell and T the operational temperature of the
electrolytic cell. This relationship is defined with the following ex-
pression [36]:

= + + + + + + + +U U r r T I
A

s s T s T t t T t T I
A

log / / 1 [V],real rev 1 2 1 2 3 2 1 2 3 2

(3)

where ri are the parameters related to the ohmic resistance of the

electrolyte (for i = 1,2), si and ti are the coefficients for overvoltage on
the electrodes (for i = 1,2,3) and A the surface area of the electrodes in
m2. Ulleberg determined the value of these parameters (r s,i i and ti) by a
non-linear regression deterministic process (see Table A.5) [36].

Faraday’s law determines the amount of hydrogen produced by the
electrolyzer. This law states that the molar flow rate of the produced
hydrogen (nH2) depends on the total number of electrolytic cells N and
the transfer rate of electrons (Eq. (4)) [36]:

=n NI
zF

mol/s ,H F2
(4)

where F is the Faraday efficiency of the electrolytic reaction. This
Faraday efficiency expresses the ratio of the flow rate of hydrogen that
is produced by the alkaline electrolyzer, over the theoretical production
rate. This ratio is expressed by the second empirical formula with Eq.
(5) [36]:
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where fi (for i = 1,…,5) are the parameters defining the evolution of
the Faraday efficiency, determined by the same non-linear regression
process used in Eq. (3) at an operational pressure of 7 bar (Table A.5)
[36].

Mori et al. studied the steady-state operations of an alkaline elec-
trolyzer, where a sinusoidal behavior of the cell temperature is ob-
served. This temperature varied with a range of ±3 °C from the desired
temperature [37]. The study acknowledged that the heat exchanger
controlling the temperature causes this variation in temperature. When
implementing this variation in the temperature control block of the
AWE Aspen Plus model, the Faraday efficiency (Eq. (5)) and cell current
(through the U-I relationship defined with Eq. (3)) are affected by this
uncertainty, resulting in a variance of hydrogen production (Eq. (4)).
This operational uncertainty is treated as a measurement error, af-
fecting the control of the electrolytic cell temperature, which is in-
cluded during the global sensitivity analysis and the robust design op-
timization within this study. Like the wind speed measurement error,
the nature of the temperature measurement distribution is unknown,
for which a Gaussian distribution is applied to the model. The UQ
analysis assesses the effect of the variation of the cell temperature for
each GA-generated design on the investigated output.

2.3. Pressure swing adsorption

The Pressure Swing Adsorption (PSA) process is selected to obtain
nitrogen from the air. Frattini et al. proposed a simplified model of the
PSA process in Aspen Plus, where the design incorporates a single-stage
compressor, to pressurize the airflow (consisting of 75.5 wt% N2), and a
separation block, to obtain nitrogen [15]. The same philosophy has
been used in Morgan et al. for a mathematical model of a wind-pow-
ered ammonia plant in steady-state operations [13]. The nitrogen

Table 1
Wind turbine generator design specifications, constraints and wind speed
measurement uncertainty.

Design specification Reported value [30] Adopted value

CP [W/W] C v( )P 37.0
A [m2] 9852.0 9852.0

Constraints

vcut in [m/s] 3 3
vrated [m/s] 12 11
vcut out [m/s] 25 25

Uncertainty Integrated value [31]
emeasurement [–] ±1%
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production depended in both cases on the delivered power to the PSA
compressor, which can be expressed with the following relationship
between the power PPSA and the air mass flow rate mair [13]:

=P m k
k

T R
p
p1

1 [W],
is

k
k

PSA
air

mech
in

out

in

( 1)

(6)

where is is the isentropic efficiency ( is = 0.75 [13]), mech the me-
chanical efficiency ( mech = 0.95 [13]),Tin the inlet temperature in K, R
the gas constant of air in J/kgK, k the heat capacity ratio ( =k 1.4), pout
the outlet pressure in bar ( =p 7out bar), and pin the inlet pressure in bar
( =p 1in bar). The mass flow of air (mair) is split into a pure mass flow of
nitrogen and a residual flow of O2 and Ar by a separation block in Aspen
Plus. The compressor and separator block in Aspen Plus uses the PENG-
ROB property method, which is based on the Peng-Robinson cubic
equation of state [15].

2.4. Haber-Bosch synthesis process

An ammonia synthesis design is adopted from the paper of Frattini
et al. to replicate the Haber-Bosch Synthesis (HBS) process performance
[15]. In the first stage of modeling the ammonia process, the block
specifications provided by the paper are implemented in Aspen Plus
(Fig. 2) [15]. In the subsequent step, we simplified the Haber-Bosch

synthesis loop to reduce the computational cost while creating a single
link between the generated wind power and the performance of the
HBS process. This model reduction enabled us to govern the process by
a single control parameter. To reach this necessary simplification,
several adaptations were applied to the HBS loop of Frattini et al. [15].
Frattini et al. initially integrated pressure losses through the use of the
tube-and-shell designs in the integrated heat exchangers ((3) and (5) in
Fig. 2) [15]. These pressure losses were discarded from the model.
Hence, the reactor compressor (6), which compensated for these pres-
sure losses, could be excluded from the model. The model reduction
resulted in the exclusion of the power consumption for this compressor.
A second modification on the adopted model is the removal of the
conditioning block (1), where water particles from the air or the elec-
trolyzer are cleansed from the flow entering the synthesis loop (Fig. 2).
Because of the absence of water in both flows, we excluded this con-
dition block from the model. We considered as well pure hydrogen and
nitrogen flow rates from the AWE and PSA processes to avoid dealing
with the catalyst poisoning caused by the presence of oxygen in both
streams, which is a well-reported problem for iron-based catalysts [38].
In industrial processes, a purity of 99.9999% is required with the help
of an additional purification system to overcome the deactivation of the
ammonia synthesis catalyst [38].

These modifications resulted in the use of a single control para-
meter, namely the direct control over the operational pressure within
the synthesis loop through the loop compressor ((2) in Fig. 2). This loop

Fig. 1. In the Aspen model of the electro-
lyzer, KOH lye dissolves in a tank with
water, where its exothermic reaction in-
creases the temperature of the mixture and
is controlled by a heat exchanger before
entering the electrolytic cell. The block
components of one electrolytic cell and the
product separation creates the H2 and O2
flows. The gas separation blocks separate
the H2 gas and KOH mixture.

Fig. 2. Frattini et al. modeled the Haber-Bosch Synthesis (HBS) loop in Aspen [15]. In this HBS, the loop compressor (2) pressurizes a mixture of H2 and N2, where the
NH3 synthesis reactor (7) converts this mixture to NH3. The ammonia is extracted from the loop through condensation ((4), (8) and (9)).
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compressor is sequentially governed by the power supply to this com-
ponent, as is expressed with Eq. (7) for a three-stage compressor.

=
=

+P m k
k

T R
p
p1

1 [W]
is i

i
i

i

k
k

HBS
mix

mech 0

2
1

( 1)

(7)

In this expression, PHBS presents the delivered power to Haber-Bosch
compressor in W, mmix the mass flow of gas mixture in kg/s, is isen-
tropic efficiency, mech the mechanical efficiency, T iin, inlet temperature
of stage i in K (for i = 0 to 2), R the gas constant of mixture in J/kgK,
kthe heat capacity ratio, p iin, the inlet pressure in kPa at stage i in kPa
(for i= 0 to 2) and +p iout, 1the outlet pressure in kPa at stage i in kPa (for
i = 0 to 2). Frattini et al. provided the decision variables of the loop
compressor, which is modeled with an MCompr block in Aspen Plus
based on the isentropic compressor model [15]. We compared the HBS
power consumption of this simplified process to the described ammonia
synthesis loop in the study of Morgan, where this study reported that
5.49% of the total power consumption of an ammonia plant goes to the
ammonia synthesis loop [39]. In comparison with our modeled HBS
loop, we observed that the loop compressor consumes 4.44% of the
total power provided to the ammonia plant. This similar result proves
that the applied simplifications are in agreement with another reported
PtA energy model.

Operational uncertainties and instability phenomena in the am-
monia synthesis process are described in the literature [17,40]; there-
fore, disturbances are inherently present in this part of the energy
storage model. The paper of Reese et al. acknowledged the presence of
uncertainties in practice for a wind-powered ammonia synthesis plant
[17]. Although the plant integrated a control system to govern the
operations, the measurements of a three-day operation of this plant
showed temperature and pressure fluctuations during the steady-state
process. The paper interpreted this variability due to the undamped
nitrogen supply of the PSA system and the occasional absence of hy-
drogen coming from the electrolysis process. However, these reported
temperature fluctuations are essentially present during the operations
and reach up to 50 °C [17] without proper identification or analysis of
disturbance. The mathematical model of an ammonia synthesis reactor
and a heat exchanger of Jinasena et al. also showed temperature os-
cillations of this process where a temperature fluctuation of 10 °C is
present [40]. We included the same reactor temperature fluctuation of
±10 °C with a Gaussian distribution within the proposed energy storage
model. The cause of this variability is linked to the temperature mea-
surement noise affecting the heat exchanger at the reactor inlet. For this

reason, we chose the Gaussian distribution to represent this noise. This
uncertainty is introduced into the operational temperature of the re-
actor (7) of the Aspen Plus model. Although pressure fluctuations were
also reported in [17], these variations manifested due to erratic flow
supply of hydrogen and nitrogen towards the synthesis process, where
the origins of the temperature variations were unsubstantiated.

3. Optimization methodology

In this section, the optimization objectives are defined and dis-
cussed. The following two subsections designate the design search space
and constraints to locate the global optimum within the model con-
straints. The final part of this section describes the applied MOGA to
find these global optimum and the chosen UQ analysis, which collec-
tively create the RDO approach. This approach is deemed necessary to
maximize the performance of the plant while minimizing the sensitivity
of the noise factors on this performance, i.e. robustifying the PtA pro-
cess.

3.1. Optimization objective

The optimization objectives of this paper were chosen in function of
the considered approach (deterministic or robust design optimization).
In the Deterministic Design Optimization (DDO) process, the search
algorithm maximizes the storage of wind energy while conceiving a
design able to continuously operate, i.e. maximizing the plants’ load
factor, which provides a higher energy efficiency and ultimately
achieve a better economic return on investment [41]. This load factor
(LF), chosen as the second objective, is expressed by the ratio of average
consumed power over time (Paverage) and the plants maximum consumed
power (Pplant,max) and formulated with Eq. (8):

= ==L
P i

P t
P

P

( )
[ ],F

i

t

1
plant

plant,max

average

plant,max (8)

where Pplant is the power consumed by the total plant at a certain time in
W and t the time in hours.

In the robust design optimization, the robustification of the am-
monia production is opted as the final objective to make it less sensitive
to the noise propagation incorporated in the subsystems. We focused on
this objective to provide a design that can capture the highest amount
of wind energy and store it through the production of the studied en-
ergy vector while being less influenced by operational uncertainties.

Fig. 3. The wind turbine transforms the wind speed
into electric power, which powers, according to a
certain ratio, the electrolyzer, the air separation
and the Haber-Bosch process. These processes pro-
duce H2, N2 and, finally, NH3, respectively. The
power ratio towards the individual processes, the
plant load size and the numbers of electrolyzers are
decision variables.
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This objective is split into two parts, where the average ammonia
production needs to be maximized and, secondly, the sensitivity on the
ammonia production is minimized. The ratio of the standards deviation
( ) over its average value (µ) of the concerned output characterizes this
sensitivity, which is defined in literature as the Coefficient of Variance
(CoV). This CoV is expressed in Eq. (9) when applied on the ammonia
production:

=
µ

CoV [ ].NH

NH

3

3 (9)

3.2. Design search space

The optimization method enhances the energy storage model ac-
cording to a sorted wind speed data set (the design parameter) while
finding the best performing plant design corresponding to the chosen
objectives. This best performing design can be reached by searching the
optimized set of decision variables within the defined search space. For
attaining this optimized set, specific decision variables were selected to
optimize the flow of power to each subsystem (AWE, PSA and HBS)
according to the wind speed occurrence of the location in Galicia
(Spain).

To control the amount of energy captured and converted by the
ammonia plant, the simulation disposes of a part of the generated wind
power by means of peak shaving; taking the total plant power size as
the first decision variable (%plantsize in Fig. 3). This captured power is
then subdivided into three fractions, where a proportion of power is
supplied to the AWE (%AlkalineWaterElectrolyzer), another part to the PSA
(%PressureSwingAdsorption and the residual power to the Haber-Bosch com-
pressor to pressurize the ammonia synthesis process (Fig. 3). To define
the necessary decision variables and attain an optimized configuration,
each subsystem generates hydrogen, nitrogen and ammonia at an in-
dividual flow rate. The power sizing of the AWE and PSA are therefore
considered as the two successive decision variables, while the power
supplied to the HBS compressor is employed as a control parameter
(Fig. 3). However, a single electrolytic cell can consume a maximum
power of 2.1 kW [36], so the stack sizing of the electrolyzer has to be
taken into account to predict the required installed capacity for a spe-
cific design. The number of electrolyzers (N) is therefore selected as the
fourth and final decision variable. The candidates generated by the
optimization algorithm for this decision variables have continuous va-
lues during the design optimization, allowing the GA to determine the
electrolyzer capacity sizing (through the evaluation of the electrolyzer
cells in series). In the discussion of the results (Section 4), these decision
variable values were rounded up to the nearest integer, which provided
a slightly higher annual ammonia production comparing when
rounding this decision variable down (relative difference of 0.002%).
For the load factor (LF), these results were not altered by this design
choice, because the number of cells does not influence the ratio of the
plants’ average and its maximum consumed power.

The design search space bounds each decision variable by a
minimum and maximum value, so an optimized set of decision vari-
ables can be located (Table 2). For the plant sizing (%plantsize), the

proportion of power flowing to the total ammonia plant can range
between 0.001% and 100% according to the 3 MW power capacity of
the WTG. This range allows the algorithm to decide which quantity of
wind power can be captured by the NH3 plant. The boundaries of the
power proportion of the AWE and PSA (%AWE and %PSA) are selected
based on a sensitivity analysis of the Aspen Plus model. The analysis
shows that the proportion of power to the AWE varies between 91% and
95% at optimal/stoichiometric conditions (HBS loop pressure of
250 bar and a H2/N2 ratio of 3 mol/mol). For the PSA, this parameter
varies between 0.9% and 1.6%. We chose a range from 1 to 2600
electrolytic cells to assure the ability of the AWE to perform at an op-
erational power of 3 MW.

3.3. Constraints

Based on the declared restraints by the manufacturer of the alkaline
electrolyzer and safety regulations of the ammonia synthesis loop, we
constrained three output parameters of the total energy storage model
(Table 2). These three parameters are the current density of the elec-
trolytic cell, the H2/N2 ratio entering the HBS compressor and its outlet
pressure.

Each electrolytic cell is bounded by a maximum current density of
300 mA/cm2 [36]. The minimum current density depends on the
thermal efficiency ( thermal) which is expressed by Eq. (10):

= U
U

[ ]thermal
tn

real (10)

where Utn is the thermoneutral voltage in V [36].
When the thermal efficiency of the electrolytic cell is higher than

100%, the system requires heat to operate. Because the AWE is a low-
temperature electrolyzer, the cell is unable to operate at this point;
leading to the elimination of these decision variables from the set of
solutions (Fig. 4).

The flow towards the Haber-Bosch compressor should consist of a
H2/N2 ratio between 2 and 3 [39,42] while the operating pressure lies
between 100 and 250 bar [43] (Fig. 5). When either of the three
parameters of the model exceeds a limit, the to be maximized objectives
are penalized with a numerical value of 10 9 and the minimized outputs
(the CoV in the RDO phase) with 109. Assigning these numerical values
drives the genetic algorithm away from the generated design points and
uses the more potent sets of decision variables to evolve towards the
best results.

3.4. Optimization algorithm

To determine the optimal set of design samples for the system
model, we implemented the multi-objective Nondominated Sorting
Genetic Algorithm (NSGA-II) [27]. First, the algorithm produces an
initial set of design samples (n samples) through Latin Hypercube
Sampling [44]. Out of this initial design sample set, the algorithm
creates a second sample set based on crossover and mutation, with an
equal number of samples n. After characterizing both sets of design
samples, each design sample is implemented in the system model and
evaluated, leading to n2 values for each objective. Thereafter, the

Table 2
Ranges of the decision variables (power allocation to the main and subprocesses, number of electrolyzer cells) chosen by the NSGA-II algorithm, where each design is
assessed if none of the three model constraints are violated (Haber-Bosch loop pressure, H2/N2 ratio and current density for one electrolytic cell).

Decision variables Range Model constraints Range

min max min max

%plantsize [%] 0.001 100 I/A [mA/cm2] f( thermal) 300
N [–] 1 2600 pHBS [bar] 100 250
%AWE [%] 91 95 H2/N2 [–] 1.5 4.5
%PSA [%] 0.9 1.6
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samples are sorted based on their dominance on the objectives and the n
samples with the highest dominance define the second generation of
design samples. This iterative process is repeated until a predetermined
number of generations is achieved or the simulation converged towards
a solution. Depending on the relation between the multiple objectives,
the optimal set of design samples can converge to a single optimal
design sample (i.e. non-conflicting objectives) or a set of design sam-
ples (i.e. conflicting objectives). In such a set of optimal design samples,
each sample dominates every other sample in at least one objective
(i.e. Pareto frontier).

3.5. Uncertainty quantification method

To propagate the uncertainties of the input parameters through the
system model, we implemented the Polynomial Chaos Expansion (PCE)
algorithm [45,46]. This technique provides a computationally efficient
alternative for the robust Monte Carlo Simulation technique for a small

stochastic dimension (<10). To quantify the mean and standard de-
viation of the objective efficiently, the PCE algorithm creates a surro-
gate model M ( ) of the physical model M ( ) based on multivariate
orthogonal polynomials i and corresponding coefficients ui:

=
=

M u M( ) ( ) ( ).
i

P

i i
0 (11)

When P in Eq. (11) is infinite, the surrogate model is an exact re-
presentation of the physical model. In practice, the series is truncated
up to a value depending on the complexity of the input–output relation
(related to the polynomial order p) and the stochastic dimension d [28]:

+ = +P p d
p d

1 ( )!
! !

.
(12)

When the PCE surrogate model is constructed, the mean µ and
standard deviation follow analytically out of the coefficients:

=µ u ,0 (13)

Fig. 4. Thermal ( thermal), Faraday ( F) and energy ( =e,cell thermal F) efficiency of the alkaline electrolyzer in function of the current density at a temperature of
80 °C. A peak in the energy efficiency indicates the most optimal point of operation for the electrolyzer to produce H2. The operational range of the electrolyzer is
bounded by a minimum and maximum current density.

Fig. 5. After the optimization algorithm defines the decision variables, a model simulation is executed, and a constraint check is performed to exclude the designs
which exceeds one of the imposed constraints, i.e. minimum and maximum current density of the individual alkaline electrolytic cell, the H2/N2 ratio or the output
pressure of the Haber-Bosch loop compressor.
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Next to the statistical moments of the objective, the contribution of
each input parameter to the objective variation can be quantified
through Sobol’ indices. The first-order Sobol’ indices (i.e. no input
parameter interaction considered) are defined as:

= =S D
D

M
M

Var[ ( )]
Var[ ( )]

.i
i i

(15)

Similar to the mean and standard deviation, these first-order Sobol’
indices can be quantified analytically via the PCE coefficients:

= = = =S u D A A/ : 0, 0.i
PC

A
i i j i

i (16)

4. Results and discussion

This section presents the results and discussion of the DDO and RDO
approaches, applied to the power-to-ammonia energy storage system. A
global sensitivity analysis applied to the DDO results shows the effect of
the uncertainties on the performance of two deterministic optimums.
To minimize the effect of the uncertainties on the performance, the
RDO approach takes them into account and find a design that can
minimize their effects on these results. Again, a global sensitivity ana-
lysis is performed on the most relevant designs to show which un-
certainties have the most impact on the robustified designs. Finally, we
proposed different measures to further reduce the effect of these un-
certainties on the RDO results.

4.1. Deterministic design optimization

The deterministic design optimization with a population (n) of 24
samples resulted in a collection of optimized solutions when max-
imizing the annual NH3 production and the plants’ load factor. The
NSGA-II algorithm converged to this set of solutions – or Pareto points –
after 33 iterations due to the conflicting objectives: maximizing
mNH ,total3 and LF . This Pareto front consists of two designs, each con-
figured with two unique decision variables, which enables the opti-
mized performance for a particular objective (Table 3). These two ex-
treme cases are named ‘Most NH3’ and ‘Best LF ’. Each intermediate set
of decision variables between those extremities provides a combination
of maximizing both output objectives with a certain weight. The results
of the UQ analysis on the two cases show the dominance of the wind
speed measurement and the ammonia reactor temperature (Fig. 6).

The ‘Most NH3’ design enables the highest storage of available wind
energy to the energy carrier, ammonia. To obtain this most productive
plant, a plant with a load of 2.77 MW (92.4% of the 3 MW WTG ca-
pacity) needs to be built, while it needs to be composed of an electro-
lyzer stack of 2500 individual electrolytic cells. The number of alkaline
electrolytic cells prevents the plant to capture the total wind turbine
capacity of 3 MW. When the GA generates a larger plant size, and the
same number of electrolyzers is incorporated, the plant would be un-
able to operate at lower wind power due to the minimum current
density (Fig. 4). This set of decision variables would result in lower
annual ammonia production and therefore withdrawn from the set of
optimal decision variables. The plant achieves a load factor of 22.4%,
which results in a low utilization rate of the total plant. However, for
this design case, there is a potential to produce a large amount of am-
monia that variates instantaneously with the wind speed. This would be
an ideal way to capture the excessive power from the WTG. However, a
commercial ammonia synthesis design is not adapted to this flexible
functioning [9]. The observed pressure variations are problematic,
knowing that the ramp-up of the process is time-constrained (multiple
hours to ramp-up the ammonia production) [23]. This could, although,
be solved by accumulating hydrogen and nitrogen gas in storage tanks

before the synthesis loop while supplying a constant mass flow of the
mixture to the Haber-Bosch process. This makes the system less vul-
nerable to pressure changes if small fluctuations of power are guaran-
teed to this part of the plant.

For the design with the highest load factor ( =L 73.5F %), the plant
consumes 6.58% of the 3 MW WTG capacity (0.197 MW) while con-
sisting of 954 electrolytic cells. A sensitivity analysis of this design
showed that the NSGA-II algorithm established a plant design with a
stable ammonia production and an electrolyzer stack performing at the
peak energy efficiency of 92.6% (Fig. 4). This ‘Best LF ’ design produces
a steady low flow of ammonia, which is almost invulnerable to the
variations of wind speed. This design type is the most common way to
produce ammonia in combination with a grid connection to compensate
for the absence of wind power [43], like the pilot plant in Minnesota
[17]. Aside from the stable production, the amount of potential wind
power discarded from the simulation (73.4% of the residual wind
power) is unwanted when the principal use is equalizing the supply and
demand of the electric grid. Complementary to the Haber-Bosch plant,
the consumption of this residual excess energy, in this case, provides
the necessity to install other flexible storage systems.

A global sensitivity analysis showed the effect of uncertainties ap-
plied to the two extreme cases, together with the corresponding Sobol’
indices (Fig. 6). The UQ analysis provided a mean value for both ob-
jectives, which was lower than their deterministic counterparts due to
the adverse effect of the uncertainties on the total performance. The
analysis applied on the ‘Most NH3’ design resulted in a relative decrease
of 0.62% in the ammonia production ( =µ 488NH ,total3 tonne NH3) and a
relative decrease in load factor by 6.63% ( =µ 20.9%LF ). The CoV of the
NH3 production and the load factor of the plant for the ‘Most NH3’ case
are respectively 1.57% and 7.46%. This result subsequently indicates
that the load factor of this design is more affected by the variations of
the uncertain parameters than the ammonia production. The UQ ana-
lysis of the ‘Best LF ’ design presented a relative decrease of 0.56% in
NH3 production and 0.03% for LF between the mean and the determi-
nistic result, where the CoV of both outcomes, in this case, are re-
spectively 0.70% and 0.07%. These values show that the set of opti-
mized decision variables for the best load factor design from the DDO
analysis provides an ammonia plant that is insensitive to variations.

Regarding the Sobol’ indices, the global sensitivity analysis shows
the noise propagation due to the temperature variations in the NH3
reactor and the electrolytic cell, and the wind speed measurement error
in the two cases for each objective (Fig. 6). The temperature variations
in the electrolyzer have, in general, less effect on the overall variance of
the objective (maximum 6.8% of the total variance in the ‘Best LF ’
design).

Different operational uncertainties influence the ammonia produc-
tion in the two extreme cases (Fig. 6). In the ‘Most NH3’ case, the wind

Table 3
Set of decision variables and results of the two extremities of the Pareto front.
An increase in the NH3 plant size (%plantsize) increases the amount of electro-
lyzers (N) and the power distribution to the AWE (%AWE). This small increase in
power distribution to the AWE relates to the non-linear behavior of the elec-
trolyzer model.

Decision variable Case

Most NH3 Best LF

%plantsize [%] 92.4 6.58
N [–] 2500 954
%AWE [%] 91.8 91.6
%PSA [%] 1.60 1.60

Result

mNH3,total [tonne] 491 122
LF [%] 22.4 73.5
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speed measurement error has a more significant effect on the noise
propagation of the NH3 production (78.8%) than in the ‘Best LF ’ case
(0.1%). The influence arises from the fact that the wind speed affects
the generated power of the WTG, hence the consumed power by the
ammonia plant. This correlation makes the design with the largest
ammonia production capacity (consuming 92.4% of the WTG maximum
power) more dependable on the wind speed and its parameter varia-
tions. On the contrary, for the ‘Best LF ’ case, this design is only using
6.58% of the WTG maximum power production, which results in a
lower annual ammonia yield, but a higher resistance against wind
speed measurement errors. However, the reactor temperature varia-
tions in this design dominate the ammonia production (93.1%), while
this uncertainty influences the result in the other case with only 19.5%
of the total variance. This variation impacts the NH3 production be-
cause of its effect on the equilibrium conditions in the ammonia reactor;
directly controlling the amount of ammonia that is produced. The ab-
sence of the wind speed measurement error results from the objective to
attain a high load factor, which ensures the continuous power flow to
the plant; consequently minimizing the effect of the wind speed var-
iation on the NH3 production. Because the influence of the wind speed
is absent in the ‘Best LF ’ design, this temperature variation will take
over the dominant role of the most significant contribution to the
variation of the annual ammonia production.

In the case of the load factor, the global sensitivity analysis shows
that the wind speed variation has the most considerable contributions

in both cases. This equivalent influence emerges with the definition of
the load factor as the second optimization objective (Eq. (8)).

4.2. Robust design optimization

In the interest to find a design that enables the storage of wind
power by the production of ammonia while minimizing the impact of
the uncertainties on this production, a Robust Design Optimization
(RDO) was performed on the model. Combining the NSGA-II algorithm
and the PCE method provides a strategy to inexpensively measure the
sensitivity of the outcome – or CoV – and progress towards a better set
of decision variables, acquired by the GA with a population size (n) of
24 samples in each iteration [46–48]. This approach optimized the
wind-powered ammonia synthesis model to determine a design that
maximizes the mean NH3 production while minimizing the CoV of this
production.

Similar to the DDO results, the RDO algorithm converged after 25
iterations to a trade-off between the two chosen objectives, where two
extremities each secure a unique set of decision variables to reach a
specific objective (Fig. 7). In the most robust case (‘Lowest CoV’), the
energy storage system produces on average low quantities of ammonia
(150 tonne of NH3 annually), but consists of a CoV which is 2.6 times
lower than the conflicting optimized design. This conflicting case (‘Best
µNH3’) delivers a 3.18 times higher mean production (477 tonne of NH3
on average) than the ‘Lowest CoV’ design. These two opposing designs

Fig. 6. The DDO algorithm provided a design trade-off when maximizing the annual NH3 production and the load factor (LF ). A global sensitivity analysis shows the
dominance of the wind speed measurement influencing the load factor and the NH3 production in the ‘Most NH3’ design. In the best LF design, the reactor
temperature dominates the NH3 production.

Fig. 7. The RDO algorithm provided a design trade-off when maximizing the average NH3 production and minimizing the Coefficient of Variance (CoV). In the ‘Best
CoV’ case, the temperature variation dominates this average NH3 production, while the wind speed variations dominate this production for the ‘Best µNH3’ design.
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have a key decision variable that determines this difference in pro-
duction, namely the fraction of power allowed from the 3 MW wind
turbine (i.e. the power plant size). This crucial decision variable creates
this trade-off of robustification (Table 4). In comparison with the ob-
tained DDO decision variables (Table 3), the RDO decision variables
have a similar design configuration with the ‘Most NH3’ case of the DDO
process. This shows that the exploration and exploitation of the Latin
Hypercube and NSGA-II algorithm reach the same results for the same
objective in the different optimization cases. The Gaussian uncertainties
cause different ammonia productions.

A global sensitivity analysis of the NH3 production applied on the two
extreme trade-off designs resulted in the individual variance of each
operational uncertainty presented through the Sobol’ indices (Fig. 7).
According to these Sobol’ indices, a different operational uncertainty
influences the ammonia production of the two designs. In the ‘Lowest
CoV’ (most robust) design case, the temperature variations of the am-
monia reactor dominate these results. This influence was also observed in
the DDO results with the ‘Best LF ’ design, where the effect of the wind
speed measurement error was (almost) nullified by changing the size of
the ammonia plant (decision variable %plantsize). This results that the re-
sidual two uncertainties (THBS and TAWE) influence the average ammonia
production. The temperature of the ammonia reactor has a direct effect
on the ammonia production, which accounts for having the most sig-
nificant impact on the sensitivity of the ammonia production (Fig. 7). If
the objective is to create a robust ammonia plant, the temperature var-
iations of the reactor need to be smaller. Jinasena et al. already provided
examples on how to stabilize temperature fluctuations by increasing the
monitoring measurements of the heat exchanger that controls the in-
coming flow. These measurements consisted of analyzing the composi-
tion of feed gases, feed flow rate, reactor inlet temperature and the
pressure along the reactor [40]. In the other case (‘Best µNH3’), a plant
design is obtained with a CoV of 1.46% and an annual mean ammonia
production of 477 tonne which is mostly influenced by the wind speed
measurement error and (in smaller quantities) the temperature of the
HBS reactor. Like in the ‘Most NH3’ case of the DDO, this influence is
directly linked to the sizing of the ammonia plant, where a large plant is
subjected to wind speed fluctuations and therefore to the wind speed
measurement errors. This relationship gives rise to a plant with high
annual average ammonia production, but more sensitive to the wind
speed measurement error than the robust design. The impact of the ac-
curacy of the wind speed can be reduced by implementing a more ac-
curate wind speed measurement device and a better calibration/posi-
tioning of the anemometer. As in the deterministic optimization, the

temperature variations of the AWE have little effect on the performance
of the ammonia plant, although 91.9% of the consumed power goes to
the alkaline electrolyzer for the production of H2.

5. Conclusion

This paper provided the steady-state modeling and optimization of
an NH3-based energy storage system in Aspen Plus based on the ex-
pected wind power production from a designed WTG in Python. The
integrated WTG powered the AWE, PSA and HBS compressor in a cer-
tain ratio, so the storage of wind energy through ammonia production
could be optimized by the applied multi-objective optimization ap-
proach, i.e. the NSGA-II algorithm. Adjacent to the modeling of these
subsystems, we identified and integrated the wind speed measurement
error, the temperature variation of the electrolyzer and the NH3
synthesis reactor as the operational uncertainties. The PCE algorithm
measured the uncertainty propagation of these operational un-
certainties when analyzing a certain objective. The multi-objective DDO
consisted of maximizing the ammonia production and the plants’ load
factor with the NSGA-II algorithm. In the RDO step, the optimization
and robustification of this ammonia production was requested from the
NSGA-II algorithm in combination with the PCE method.

The DDO step provided a Pareto front where its outer ends delivered
a productive and high load factor design. The power sizing of the sto-
rage system and the number of electrolytic cells are the key decision
variables that allow a PtA plant to capture wind energy or enables one
to operate continuously. A global sensitivity analysis on each objective
showed that the temperature variations of the ammonia reactor and the
wind speed measurement influence the load factor, while the NH3
production is either dominated by the wind speed measurement or by
the temperature fluctuation in the ammonia reactor. The integrated
temperature variations in the AWE have little influence on the noise on
each DDO objective.

Similar to the DDO case, the robust optimization procedure deliv-
ered a trade-off between a productive and a robust design. The key
decision variable for obtaining either one of the two designs lies within
the sizing of the total storage system. A larger sized storage system
grants the opportunity to produce higher amounts of ammonia, but is
subjected to the uncertainty of the wind speed measurement and the
temperature fluctuation in the ammonia reactor. In contrast to this
productive design, the most robust design provides lower quantities of
ammonia, but is only subjected to the temperature fluctuation of the
ammonia reactor and in smaller proportion to the temperature varia-
tion in the AWE. Implementing a more accurate wind speed measure-
ment device and increasing the monitoring measurements of the heat
exchanger that controls the incoming flow towards the HBS reactor can
decrease the CoV on the NH3 production in both RDO cases. A future
investigation will involve analyzing the dynamic operations of the
power-to-ammonia pathway and robustifying its levelized cost.
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Table 4
Set of decision variables (number of electrolyzer cells, power allocation to the
main and subprocesses) generated by the NSGA-II algorithm and results of the
two extremities (‘Best µNH3’ and ‘Lowest CoV’) from the Pareto front established
by the RDO process. The NH3 plant size (%plantsize) is the key decision variable
for composing a robust ammonia plant.

Decision variable Case

Best µNH3 Lowest CoV

%plantsize [%] 85.7 11.4
N [–] 2490 2339
%AWE [%] 91.9 92.5
%PSA [%] 1.59 1.23

Result

µNH3 [tonne] 477 150
CoV [%] 1.46 0.56
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Table A.5
Model parameters of the AWE located in the PHOEBUS plant operating at a
pressure of 7 bar and a temperature between 30 and 80 °C [36].

U-I parameters Value

r1 [ m2] 7.33110 5

r2 [ °m C2 1] 1.1010 7

s1 [V] 1.58610 1

s2 [ °V C 1] 1.37810 3

s3 [ °V C 2] 1.60610 5

t1 [m2 A 1] 1.59910 2

t2 [m2 °A C1 1] −1.302
t3 [m2 °A C1 2] 421.3102

A [m2] 0.25

F parameters

f1 [%] 99.5
f2 [m2 A 1] −9.5788
f3 [m2 °A C1 1] −0.0555
f4 [m4 A 1] 1502.7083
f5 [m4 °A C1 1] −70.8005
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